Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 146
Filtrar
1.
Int J Mol Sci ; 25(4)2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38396896

RESUMO

Late cardiotoxicity is a formidable challenge in anthracycline-based anticancer treatments. Previous research hypothesized that co-administration of carvedilol (CVD) and dexrazoxane (DEX) might provide superior protection against doxorubicin (DOX)-induced cardiotoxicity compared to DEX alone. However, the anticipated benefits were not substantiated by the findings. This study focuses on investigating the impact of CVD on myocardial redox system parameters in rats treated with DOX + DEX, examining its influence on overall toxicity and iron metabolism. Additionally, considering the previously observed DOX-induced ascites, a seldom-discussed condition, the study explores the potential involvement of the liver in ascites development. Compounds were administered weekly for ten weeks, with a specific emphasis on comparing parameter changes between DOX + DEX + CVD and DOX + DEX groups. Evaluation included alterations in body weight, feed and water consumption, and analysis of NADPH2, NADP+, NADPH2/NADP+, lipid peroxidation, oxidized DNA, and mRNA for superoxide dismutase 2 and catalase expressions in cardiac muscle. The iron management panel included markers for iron, transferrin, and ferritin. Liver abnormalities were assessed through histological examinations, aspartate transaminase, alanine transaminase, and serum albumin level measurements. During weeks 11 and 21, reduced NADPH2 levels were observed in almost all examined groups. Co-administration of DEX and CVD negatively affected transferrin levels in DOX-treated rats but did not influence body weight changes. Ascites predominantly resulted from cardiac muscle dysfunction rather than liver-related effects. The study's findings, exploring the impact of DEX and CVD on DOX-induced cardiotoxicity, indicate a lack of scientific justification for advocating the combined use of these drugs at histological, biochemical, and molecular levels.


Assuntos
Ascite , Cardiotoxicidade , Ratos , Animais , Carvedilol/farmacologia , NADP/metabolismo , Cardiotoxicidade/metabolismo , Ascite/patologia , Doxorrubicina/uso terapêutico , Miocárdio/metabolismo , Antibióticos Antineoplásicos/uso terapêutico , Ferro/metabolismo , Peroxidação de Lipídeos , Fígado/metabolismo , Transferrina/metabolismo , Peso Corporal
2.
Photochem Photobiol Sci ; 23(3): 517-526, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38337129

RESUMO

Squamous cell carcinoma represents the second most common type of keratinocyte carcinoma with ultraviolet radiation (UVR) making up the primary risk factor. Oral photoprotection aims to reduce incidence rates through oral intake of photoprotective compounds. Recently, drug repurposing has gained traction as an interesting source of chemoprevention. Because of their reported photoprotective properties, we investigated the potential of bucillamine, carvedilol, metformin, and phenformin as photoprotective compounds following oral intake in UVR-exposed hairless mice. Tumour development was observed in all groups in response to UVR, with only the positive control (Nicotinamide) demonstrating a reduction in tumour incidence (23.8%). No change in tumour development was observed in the four repurposed drug groups compared to the UV control group, whereas nicotinamide significantly reduced carcinogenesis (P = 0.00012). Metformin treatment significantly reduced UVR-induced erythema (P = 0.012), bucillamine and phenformin increased dorsal pigmentation (P = 0.0013, and P = 0.0005), but no other photoprotective effect was observed across the repurposed groups. This study demonstrates that oral supplementation with bucillamine, carvedilol, metformin, or phenformin does not affect UVR-induced carcinogenesis in hairless mice.


Assuntos
Carcinoma de Células Escamosas , Cisteína/análogos & derivados , Neoplasias Cutâneas , Camundongos , Animais , Raios Ultravioleta , Carvedilol/farmacologia , Camundongos Pelados , Fenformin/farmacologia , Carcinoma de Células Escamosas/prevenção & controle , Carcinoma de Células Escamosas/etiologia , Carcinogênese/efeitos da radiação , Niacinamida/farmacologia , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/prevenção & controle , Neoplasias Cutâneas/patologia , Pele/efeitos da radiação
3.
J Pharmacol Exp Ther ; 388(1): 145-155, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37977817

RESUMO

Heart failure with preserved ejection fraction (HFpEF) is a major health problem with limited treatment options. Although optimizing cardiac energy metabolism is a potential approach to treating heart failure, it is poorly understood what alterations in cardiac energy metabolism actually occur in HFpEF. To determine this, we used mice in which HFpEF was induced using an obesity and hypertension HFpEF protocol for 10 weeks. Next, carvedilol, a third-generation ß-blocker and a biased agonist that exhibits agonist-like effects through ß arrestins by activating extracellular signal-regulated kinase, was used to decrease one of these parameters, namely hypertension. Heart function was evaluated by invasive pressure-volume loops and echocardiography as well as by ex vivo working heart perfusions. Glycolysis and oxidation rates of glucose, fatty acids, and ketones were measured in the isolated working hearts. The development of HFpEF was associated with a dramatic decrease in cardiac glucose oxidation rates, with a parallel increase in palmitate oxidation rates. Carvedilol treatment decreased the development of HFpEF but had no major effect on cardiac energy substrate metabolism. Carvedilol treatment did increase the expression of cardiac ß arrestin 2 and proteins involved in mitochondrial biogenesis. Decreasing bodyweight in obese HFpEF mice increased glucose oxidation and improved heart function. This suggests that the dramatic energy metabolic changes in HFpEF mice hearts are primarily due to the obesity component of the HFpEF model. SIGNIFICANCE STATEMENT: Metabolic inflexibility occurs in heart failure with preserved ejection fraction (HFpEF) mice hearts. Lowering blood pressure improves heart function in HFpEF mice with no major effect on energy metabolism. Between hypertension and obesity, the latter appears to have the major role in HFpEF cardiac energetic changes. Carvedilol increases mitochondrial biogenesis and overall energy expenditure in HFpEF hearts.


Assuntos
Insuficiência Cardíaca , Hipertensão , Camundongos , Animais , Volume Sistólico , Miocárdio/metabolismo , Carvedilol/farmacologia , Carvedilol/metabolismo , Metabolismo Energético , Obesidade/complicações , Obesidade/metabolismo , Hipertensão/metabolismo , Glucose/metabolismo
4.
J Pharmacol Exp Ther ; 388(2): 495-505, 2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-37827703

RESUMO

The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard (NM) cause severe vesicating skin injuries. The pathologic mechanisms for the skin injury following mustard exposure are poorly understood; therefore, no effective countermeasure is available. Previous reports demonstrated the protective activity of carvedilol, a US Food and Drug Administration (FDA)-approved ß-blocker, against UV radiation-induced skin damage. Thus, the current study evaluated the effects of carvedilol on NM-induced skin injuries in vitro and in vivo. In the murine epidermal cell line JB6 Cl 41-5a, ß-blockers with different receptor subtype selectivity were examined. Carvedilol and both of its enantiomers, R- and S-carvedilol, were the only tested ligands statistically reducing NM-induced cytotoxicity. Carvedilol also reduced NM-induced apoptosis and p53 expression. In SKH-1 mice, NM increased epidermal thickness, damaged skin architecture, and induced nuclear factor κB (NF-κB)-related proinflammatory genes as assessed by RT2 Profiler PCR (polymerase chain reaction) Arrays. To model chemical warfare scenario, 30 minutes after exposure to NM, 10 µM carvedilol was applied topically. Twenty-four hours after NM exposure, carvedilol attenuated NM-induced epidermal thickening, Ki-67 expression, a marker of cellular proliferation, and multiple proinflammatory genes. Supporting the in vitro data, the non-ß-blocking R-enantiomer of carvedilol had similar effects as racemic carvedilol, and there was no difference between carvedilol and R-carvedilol in the PCR array data, suggesting that the skin protective effects are independent of the ß-adrenergic receptors. These data suggest that the ß-blocker carvedilol and its enantiomers can be repurposed as countermeasures against mustard-induced skin injuries. SIGNIFICANCE STATEMENT: The chemical warfare agent sulfur mustard and its structural analog nitrogen mustard cause severe vesicating skin injuries for which no effective countermeasure is available. This study evaluated the effects of US Food and Drug Administration (FDA)-approved ß-blocker carvedilol on nitrogen mustard-induced skin injuries to repurpose this cardiovascular drug as a medical countermeasure.


Assuntos
Substâncias para a Guerra Química , Gás de Mostarda , Animais , Camundongos , Mecloretamina/toxicidade , Mecloretamina/metabolismo , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Carvedilol/metabolismo , Substâncias para a Guerra Química/toxicidade , Gás de Mostarda/farmacologia , Gás de Mostarda/toxicidade , Pele , Antagonistas Adrenérgicos beta/farmacologia
5.
J Pharmacol Exp Ther ; 388(2): 688-700, 2024 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-38129128

RESUMO

The determination of affinity by using functional assays is important in drug discovery because it provides a more relevant estimate of the strength of interaction of a ligand to its cognate receptor than radioligand binding. However, empirical evidence for so-called, "functional affinity" is limited. Herein, we determined whether the affinity of carvedilol, a ß-adrenoceptor antagonist used to treat heart failure that also promotes extracellular signal-regulated kinases 1 and 2 (ERK1/2) phosphorylation, differed between these two pharmacological activities. Four structurally related ß-adrenoceptor antagonists (alprenolol, carazolol, pindolol, propranolol) that also activated ERK1/2 were included as comparators to enhance our understanding of how these drugs work in the clinical setting. In HEK293 cells stably expressing the human ß 2-adrenoceptor carvedilol and related aryloxypropanolamines were partial agonists of ERK1/2 phosphorylation with potencies ([A]50s) that were lower than their equilibrium dissociation constants (K Bs) as ß 2-adrenoceptor antagonists. As the [A]50 of a partial agonist is a good approximation of its K B, then these data indicated that the affinities of carvedilol and related ligands for these two activities were distinct. Moreover, there was a significant negative rank order correlation between the [A]50 of each ligand to activate ERK1/2 and their intrinsic activities (i.e., as intrinsic activity for ERK1/2 phosphorylation increased, so did affinity). Genome editing revealed that the transducer that coupled the ß 2-adrenoceptor to ERK1/2 phosphorylation in response to carvedilol and other ß 2-adrenoceptor antagonists was Gαs. Collectively, these data support the concept of "functional affinity" and indicate that the ability of the ß 2-adrenoceptor to recruit Gαs may influence the affinity of the activating ligand. SIGNIFICANCE STATEMENT: In HEK293 cells overexpressing the human ß2-adrenoceptor carvedilol and four related aryloxypropanolamines behaved as ß2-adrenoceptor antagonists and partial agonists of ERK1/2 phosphorylation with rank orders of affinity that were distinct. These data imply that carvedilol and other ß-blockers can stabilize the ß2-adrenoceptor in different affinity conformations that are revealed when functionally distinct responses are measured. This is the basis for the pharmacological concept of "functional affinity."


Assuntos
Sistema de Sinalização das MAP Quinases , Propanolaminas , Humanos , Carvedilol/farmacologia , Células HEK293 , Fosforilação , Ligantes , Agonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/farmacologia , Propanolaminas/farmacologia
6.
Sci Rep ; 13(1): 21404, 2023 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-38049492

RESUMO

The pandemic of coronavirus disease 2019 (COVID-19) caused by the infection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused a significant impact on the economy and public health worldwide. Therapeutic options such as drugs and vaccines for this newly emerged disease are eagerly desired due to the high mortality. Using the U.S. Food and Drug Administration (FDA) approved drugs to treat a new disease or entirely different diseases, in terms of drug repurposing, minimizes the time and cost of drug development compared to the de novo design of a new drug. Drug repurposing also has some other advantages such as reducing safety evaluation to accelerate drug application on time. Carvedilol, a non-selective beta-adrenergic blocker originally designed to treat high blood pressure and manage heart disease, has been shown to impact SARS-CoV-2 infection in clinical observation and basic studies. Here, we applied computer-aided approaches to investigate the possibility of repurposing carvedilol to combat SARS-CoV-2 infection. The molecular mechanisms and potential molecular targets of carvedilol were identified by evaluating the interactions of carvedilol with viral proteins. Additionally, the binding affinities of in vivo metabolites of carvedilol with selected targets were evaluated. The docking scores for carvedilol and its metabolites with RdRp were - 10.0 kcal/mol, - 9.8 kcal/mol (1-hydroxyl carvedilol), - 9.7 kcal/mol (3-hydroxyl carvedilol), - 9.8 kcal/mol (4-hydroxyl carvedilol), - 9.7 kcal/mol (5-hydroxyl carvedilol), - 10.0 kcal/mol (8-hydroxyl carvedilol), and - 10.1 kcal/mol (O-desmethyl carvedilol), respectively. Using the molecular dynamics simulation (100 ns) method, we further confirmed the stability of formed complexes of RNA-dependent RNA polymerase (RdRp) and carvedilol or its metabolites. Finally, the drug-target interaction mechanisms that contribute to the complex were investigated. Overall, this study provides the molecular targets and mechanisms of carvedilol and its metabolites as repurposed drugs to fight against SARS-CoV-2 infection.


Assuntos
COVID-19 , Humanos , SARS-CoV-2 , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Reposicionamento de Medicamentos , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Antivirais/farmacologia , Antivirais/uso terapêutico , Antivirais/química , RNA Polimerase Dependente de RNA
9.
Circulation ; 148(21): 1691-1704, 2023 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-37850394

RESUMO

BACKGROUND: Hypercontractility and arrhythmia are key pathophysiologic features of hypertrophic cardiomyopathy (HCM), the most common inherited heart disease. ß-Adrenergic receptor antagonists (ß-blockers) are the first-line therapy for HCM. However, ß-blockers commonly selected for this disease are often poorly tolerated in patients, where heart-rate reduction and noncardiac effects can lead to reduced cardiac output and fatigue. Mavacamten, myosin ATPase inhibitor recently approved by the US Food and Drug Administration, has demonstrated the ability to ameliorate hypercontractility without lowering heart rate, but its benefits are so far limited to patients with left ventricular (LV) outflow tract obstruction, and its effect on arrhythmia is unknown. METHODS: We screened 21 ß-blockers for their impact on myocyte contractility and evaluated the antiarrhythmic properties of the most promising drug in a ventricular myocyte arrhythmia model. We then examined its in vivo effect on LV function by hemodynamic pressure-volume loop analysis. The efficacy of the drug was tested in vitro and in vivo compared with current therapeutic options (metoprolol, verapamil, and mavacamten) for HCM in an established mouse model of HCM (Myh6R403Q/+ and induced pluripotent stem cell (iPSC)-derived cardiomyocytes from patients with HCM (MYH7R403Q/+). RESULTS: We identified that carvedilol, a ß-blocker not commonly used in HCM, suppresses contractile function and arrhythmia by inhibiting RyR2 (ryanodine receptor type 2). Unlike metoprolol (a ß1-blocker), carvedilol markedly reduced LV contractility through RyR2 inhibition, while maintaining stroke volume through α1-adrenergic receptor inhibition in vivo. Clinically available carvedilol is a racemic mixture, and the R-enantiomer, devoid of ß-blocking effect, retains the ability to inhibit both α1-receptor and RyR2, thereby suppressing contractile function and arrhythmias without lowering heart rate and cardiac output. In Myh6R403Q/+ mice, R-carvedilol normalized hyperdynamic contraction, suppressed arrhythmia, and increased cardiac output better than metoprolol, verapamil, and mavacamten. The ability of R-carvedilol to suppress contractile function was well retained in MYH7R403Q/+ iPSC-derived cardiomyocytes. CONCLUSIONS: R-enantiomer carvedilol attenuates hyperdynamic contraction, suppresses arrhythmia, and at the same time, improves cardiac output without lowering heart rate by dual blockade of α1-adrenergic receptor and RyR2 in mouse and human models of HCM. This combination of therapeutic effects is unique among current therapeutic options for HCM and may particularly benefit patients without LV outflow tract obstruction.


Assuntos
Cardiomiopatia Hipertrófica , Metoprolol , Humanos , Camundongos , Animais , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Metoprolol/uso terapêutico , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Cardiomiopatia Hipertrófica/complicações , Cardiomiopatia Hipertrófica/tratamento farmacológico , Arritmias Cardíacas/tratamento farmacológico , Arritmias Cardíacas/metabolismo , Antagonistas Adrenérgicos beta/farmacologia , Antagonistas Adrenérgicos beta/uso terapêutico , Miócitos Cardíacos/metabolismo , Verapamil/uso terapêutico , Receptores Adrenérgicos/metabolismo
10.
Int J Mol Sci ; 24(18)2023 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-37762145

RESUMO

Cardiac Kv4.3 channels contribute to the transient outward K+ current, Ito, during early repolarization of the cardiac action potential. Two different isoforms of Kv4.3 are present in the human ventricle and exhibit differential remodeling in heart failure (HF). Cardioselective betablockers are a cornerstone of HF with reduced ejection fraction therapy as well as ventricular arrhythmia treatment. In this study we examined pharmacological effects of betablockers on both Kv4.3 isoforms to explore their potential for isoform-specific therapy. Kv4.3 isoforms were expressed in Xenopus laevis oocytes and incubated with the respective betablockers. Dose-dependency and biophysical characteristics were examined. HEK 293T-cells were transfected with the two Kv4.3 isoforms and analyzed with Western blots. Carvedilol (100 µM) blocked Kv4.3 L by 77 ± 2% and Kv4.3 S by 67 ± 6%, respectively. Metoprolol (100 µM) was less effective with inhibition of 37 ± 3% (Kv4.3 L) and 35 ± 4% (Kv4.3 S). Bisoprolol showed no inhibitory effect. Current reduction was not caused by changes in Kv4.3 protein expression. Carvedilol inhibited Kv4.3 channels at physiologically relevant concentrations, affecting both isoforms. Metoprolol showed a weaker blocking effect and bisoprolol did not exert an effect on Kv4.3. Blockade of repolarizing Kv4.3 channels by carvedilol and metoprolol extend their pharmacological mechanism of action, potentially contributing beneficial antiarrhythmic effects in normal and failing hearts.


Assuntos
Insuficiência Cardíaca , Metoprolol , Humanos , Metoprolol/farmacologia , Bisoprolol/farmacologia , Carvedilol/farmacologia , Coração , Insuficiência Cardíaca/tratamento farmacológico , Isoformas de Proteínas
11.
Toxicol Sci ; 196(2): 200-217, 2023 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-37632784

RESUMO

Carvedilol is a widely used beta-adrenoreceptor antagonist for multiple cardiovascular indications; however, it may induce cholestasis in patients, but the mechanism for this effect is unclear. Carvedilol also prevents the development of various forms of experimental liver injury, but its effect on nonalcoholic steatohepatitis (NASH) is largely unknown. In this study, we determined the effect of carvedilol (10 mg/kg/day p.o.) on bile formation and bile acid (BA) turnover in male C57BL/6 mice consuming either a chow diet or a western-type NASH-inducing diet. BAs were profiled by liquid chromatography-mass spectrometry and BA-related enzymes, transporters, and regulators were evaluated by western blot analysis and qRT-PCR. In chow diet-fed mice, carvedilol increased plasma concentrations of BAs resulting from reduced BA uptake to hepatocytes via Ntcp transporter downregulation. Inhibition of the ß-adrenoreceptor-cAMP-Epac1-Ntcp pathway by carvedilol may be the post-transcriptional mechanism underlying this effect. In contrast, carvedilol did not worsen the deterioration of BA homeostasis accompanying NASH; however, it shifted the spectra of BAs toward more hydrophilic and less toxic α-muricholic and hyocholic acids. This positive effect of carvedilol was associated with a significant attenuation of liver steatosis, inflammation, and fibrosis in NASH mice. In conclusion, our results indicate that carvedilol may increase BAs in plasma by modifying their liver transport. In addition, carvedilol provided significant hepatoprotection in a NASH murine model without worsening BA accumulation. These data suggest beneficial effects of carvedilol in patients at high risk for developing NASH.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Animais , Camundongos , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ácidos e Sais Biliares/metabolismo , Carvedilol/farmacologia , Carvedilol/metabolismo , Camundongos Endogâmicos C57BL , Fígado , Proteínas de Membrana Transportadoras/metabolismo , Homeostase
12.
Eur J Clin Microbiol Infect Dis ; 42(9): 1063-1072, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37428238

RESUMO

We evaluated in vitro activity of 13 drugs used in the treatment of some non-communicable diseases via repurposing to determine their potential use in the treatment of Acinetobacter baumannii infections caused by susceptible and multidrug-resistant strains. A. baumannii is a multidrug-resistant Gram-negative bacteria causing nosocomial infections, especially in intensive care units. It has been identified in the WHO critical pathogen list and this emphasises urgent need for new treatment options. As the development of new therapeutics is expensive and time consuming, finding new uses of existing drugs via drug repositioning has been favoured. Antimicrobial susceptibility tests were conducted on all 13 drugs according to CLSI. Drugs with MIC values below 128 µg/mL and control antibiotics were further subjected to synergetic effect and bacterial time-kill analysis. Carvedilol-gentamicin (FICI 0.2813) and carvedilol-amlodipine (FICI 0.5625) were determined to have synergetic and additive effect, respectively, on the susceptible A. baumannii strain, and amlodipine-tetracycline (FICI 0.75) and amitriptyline-tetracycline (FICI 0.75) to have additive effect on the multidrug-resistant A. baumannii strain. Most remarkably, both amlodipine and amitriptyline reduced the MIC of multidrug-resistant, including some carbapenems, A. baumannii reference antibiotic tetracycline from 2 to 0.5 µg/mL, for 4-folds. All these results were further supported by bacterial time-kill assay and all combinations showed bactericidal activity, at certain hours, at 4XMIC. Combinations proposed in this study may provide treatment options for both susceptible and multidrug-resistant A. baumannii infections but requires further pharmacokinetics and pharmacodynamics analyses and in vivo re-evaluations using appropriate models.


Assuntos
Infecções por Acinetobacter , Acinetobacter baumannii , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Reposicionamento de Medicamentos , Amitriptilina/farmacologia , Amitriptilina/uso terapêutico , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Anlodipino/farmacologia , Anlodipino/uso terapêutico , Sinergismo Farmacológico , Testes de Sensibilidade Microbiana , Infecções por Acinetobacter/microbiologia , Farmacorresistência Bacteriana Múltipla , Tetraciclinas/farmacologia
13.
J Korean Med Sci ; 38(22): e173, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37272562

RESUMO

BACKGROUND: Carvedilol is a beta-adrenergic receptor antagonist primarily metabolized by cytochromes P450 (CYP) 2D6. This study established a carvedilol population pharmacokinetic (PK)-pharmacodynamic (PD) model to describe the effects of CYP2D6 genetic polymorphisms on the inter-individual variability of PK and PD. METHODS: The PK-PD model was developed from a clinical study conducted on 21 healthy subjects divided into three CYP2D6 phenotype groups, with six subjects in the extensive metabolizer (EM, *1/*1, *1/*2), seven in the intermediate metabolizer-1 (IM-1, *1/*10, *2/*10), and eight in the intermediate metabolizer-2 (IM-2, *10/*10) groups. The PK-PD model was sequentially developed, and the isoproterenol-induced heart rate changes were used to establish the PD model. A direct effect response and inhibitory Emax model were used to develop a carvedilol PK-PD model. RESULTS: The carvedilol PK was well described by a two-compartment model with zero-order absorption, lag time, and first-order elimination. The carvedilol clearance in the CYP2D6*10/*10 group decreased by 32.8% compared with the other groups. The inhibitory concentration of carvedilol estimated from the final PK-PD model was 16.5 ng/mL regardless of the CYP2D6 phenotype. CONCLUSION: The PK-PD model revealed that the CYP2D6 genetic polymorphisms were contributed to the inter-individual variability of carvedilol PK, but not PD.


Assuntos
Citocromo P-450 CYP2D6 , Propanolaminas , Carvedilol/farmacologia , Citocromo P-450 CYP2D6/genética , Frequência Cardíaca , Propanolaminas/farmacocinética , Carbazóis/farmacocinética , Genótipo
14.
Int J Mol Sci ; 24(12)2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37373350

RESUMO

The anticancer efficacy of doxorubicin (DOX) is dose-limited because of cardiomyopathy, the most significant adverse effect. Initially, cardiotoxicity develops clinically silently, but it eventually appears as dilated cardiomyopathy with a very poor prognosis. Dexrazoxane (DEX) is the only FDA-approved drug to prevent the development of anthracycline cardiomyopathy, but its efficacy is insufficient. Carvedilol (CVD) is another product being tested in clinical trials for the same indication. This study's objective was to evaluate anthracycline cardiotoxicity in rats treated with CVD in combination with DEX. The studies were conducted using male Wistar rats receiving DOX (1.6 mg/kg b.w. i.p., cumulative dose: 16 mg/kg b.w.), DOX and DEX (25 mg/kg b.w. i.p.), DOX and CVD (1 mg/kg b.w. i.p.), or a combination (DOX + DEX + CVD) for 10 weeks. Afterward, in the 11th and 21st weeks of the study, echocardiography (ECHO) was performed, and the tissues were collected. The addition of CVD to DEX as a cardioprotective factor against DOX had no favorable advantages in terms of functional (ECHO), morphological (microscopic evaluation), and biochemical alterations (cardiac troponin I and brain natriuretic peptide levels), as well as systemic toxicity (mortality and presence of ascites). Moreover, alterations caused by DOX were abolished at the tissue level by DEX; however, when CVD was added, the persistence of DOX-induced unfavorable alterations was observed. The addition of CVD normalized the aberrant expression of the vast majority of indicated genes in the DOX + DEX group. Overall, the results indicate that there is no justification to use a simultaneous treatment of DEX and CVD in DOX-induced cardiotoxicity.


Assuntos
Cardiomiopatias , Dexrazoxano , Masculino , Ratos , Animais , Dexrazoxano/farmacologia , Dexrazoxano/uso terapêutico , Antraciclinas/efeitos adversos , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/etiologia , Cardiotoxicidade/prevenção & controle , Ratos Wistar , Antibióticos Antineoplásicos/toxicidade , Cardiomiopatias/induzido quimicamente , Cardiomiopatias/prevenção & controle , Cardiomiopatias/tratamento farmacológico , Doxorrubicina/farmacologia , Inibidores da Topoisomerase II/uso terapêutico
15.
Life Sci ; 324: 121737, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127183

RESUMO

INTRODUCTION: Psychiatric and cognitive impairment has been observed in premenopausal women with a hormonal disorder called polycystic ovary syndrome (PCOS). This study aimed to explore the possibility of combining pharmacological agents: Carvedilol and Clomiphene citrate, with antiestrogenic, antioxidant and anti-inflammatory properties in letrozole-induced PCOS rats. METHODS: PCOS was induced in rats by the administration of letrozole (1 mg/kg) daily for 21 days. They were subsequently divided into four groups, each receiving either the vehicle or Clomiphene citrate (1 mg/kg) or Carvedilol or a combination of Clomiphene citrate and Carvedilol, respectively from days 22-36. Neurobehavioral studies were conducted on day 35 (Elevated plus maze and Y maze) and day 36 (Novel object recognition). The serum levels of the antioxidants Superoxide dismutase, Catalase, Interleukin 1B (IL-1B), and the gene expression of nuclear factor-erythroid factor 2-related factor 2 (Nrf2), Nuclear Factor k-Beta (NFKB), and acetylcholine esterase in the frontal brain homogenate was determined. RESULT: Both Carvedilol and the combination therapy reversed the anxiety-like behavior, while Clomiphene citrate and the combination therapy ameliorated the spatial and non-spatial memory impairment observed in PCOS rats. Carvedilol, Clomiphene citrate, and the combination therapy increased the serum concentration of SOD and Catalase and decreased the serum concentration of IL-1B. The combination therapy up-regulated the NRF-2, NFKB, and acetylcholine esterase gene expression. CONCLUSION: Study showed that the combination of carvedilol and clomiphene citrate has anxiolytic potential and improved cognitive functions in PCOS rats. This might have been achieved by carvedilol and clomiphene citrate's ability to modulate the cholinergic system and the Nrf2 pathway while downregulating the NFκB signaling pathway.


Assuntos
Infertilidade Feminina , Síndrome do Ovário Policístico , Animais , Feminino , Humanos , Ratos , Acetilcolina , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Catalase , Clomifeno/farmacologia , Clomifeno/uso terapêutico , Esterases , Fármacos para a Fertilidade Feminina/farmacologia , Fármacos para a Fertilidade Feminina/uso terapêutico , Infertilidade Feminina/tratamento farmacológico , Letrozol/farmacologia , Fator 2 Relacionado a NF-E2 , Indução da Ovulação , Fenótipo , Síndrome do Ovário Policístico/metabolismo , NF-kappa B/efeitos dos fármacos , NF-kappa B/metabolismo
16.
Life Sci ; 324: 121692, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37061127

RESUMO

Idiopathic pulmonary fibrosis (IPF) is the most widely studied interstitial lung disease. IPF eventually leads to respiratory insufficiency, lung cancer, and death. Carvedilol (CAR) is a third-generation ß-adrenergic receptor antagonist with an α1-blocking effect. CAR demonstrates antifibrotic activities in various experimental models of organ fibrosis. AIMS: This work is designed to explore the possible alleviating effects of CAR on bleomycin (BLM)-induced lung fibrosis in rats. MAIN METHODS: The BLM rat model of lung fibrosis was achieved by intratracheal delivery of a single dose of 5 mg/kg of BLM. Seven days following BLM injection, either prednisolone or CAR was orally administered at doses of 10 mg/kg once daily for 21 days to the rats. The actions of CAR were evaluated by lung oxidant/antioxidant parameters, protein concentration and total leucocyte count (TLC) in bronchoalveolar lavage fluid (BALF), fibrosis regulator-related genes along with the coexistent lung histological changes. KEY FINDINGS: CAR effectively decreased lung malondialdehyde level, increased superoxide dismutase activity, declined both protein concentration and TLC in BALF, downregulated TGF-ß1/α-SMA/Smad2/3 and STAT3 gene expressions, and repaired the damaged lung tissues. SIGNIFICANCE: CAR conferred therapeutic potential against BLM-induced lung fibrosis in rats, at least in part, to its antioxidant, anti-inflammatory, and antifibrotic activities. CAR could be utilized as a prospective therapeutic option in patients with lung fibrosis in clinical practice.


Assuntos
Antagonistas de Receptores Adrenérgicos alfa 1 , Agonistas Adrenérgicos beta , Carvedilol , Reposicionamento de Medicamentos , Expressão Gênica , Fibrose Pulmonar Idiopática , Bleomicina , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Animais , Ratos , Fibrose Pulmonar Idiopática/tratamento farmacológico , Antagonistas de Receptores Adrenérgicos alfa 1/farmacologia , Antagonistas de Receptores Adrenérgicos alfa 1/uso terapêutico , Agonistas Adrenérgicos beta/farmacologia , Agonistas Adrenérgicos beta/uso terapêutico , Expressão Gênica/efeitos dos fármacos , Fator de Crescimento Transformador beta/genética , Proteína Smad2/genética , Proteína Smad3/genética , Fator de Transcrição STAT3/genética , Actinas/genética , Modelos Animais de Doenças , Masculino , Ratos Endogâmicos
17.
Toxicol Appl Pharmacol ; 465: 116448, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36921847

RESUMO

AIM: The aim of this study was to investigate the potential cardioprotective and anti-cancer effects of carvedilol (CAR) either free or as loaded nano-formulated with or without doxorubicin (DOX) in solid Ehrlich carcinoma (SEC)-bearing mice. It focused on assessment of cardiac damage, drug resistance, apoptosis, oxidative stress status, angiogenesis and proliferation. METHODS: CAR was loaded into poly-D,L lactic-co-glycolic acid)PLGA(or Niosomes. SEC was induced in female albino mice as an experimental model of breast cancer. Seventy-two mice were randomly divided into 9 equal groups (Normal control, Untreated-SEC, SEC + DOX, SEC + CAR-free, SEC + CAR-PLGA, SEC + CAR-Niosomes, SEC + DOX + CAR-free, SEC + DOX + CAR-PLGA and SEC + DOX + CAR-Niosomes). Tumor volume and survival rate were recorded. On day 28 from tumor inoculation, mice were sacrificed, and blood samples were collected for determination of serum lactate dehydrogenase (LDH) and creatine kinase-MB (CK-MB). One part from tumor tissues was prepared for assessment of multidrug resistance protein-1 (MDR-1), caspase-3, reduced glutathione (GSH) and malondialdehyde (MDA), while the other part was processed for histopathological examination and immunohistochemical expression of vascular endothelial growth factor (VEGF) and Ki-67. RESULTS: There was non-significant difference between CAR-free, CAR-PLGA and CAR-Niosomes as anticancer either alone or when combined with DOX. However, CAR-free demonstrated potential cardioprotective effects against cardiac damage mediated by cancer or DOX that have been enhanced using CAR-PLGA or CAR-Niosomes, but that of Niosomes outperformed them both. CONCLUSION: CAR could be used as an adjuvant therapy with DOX, especially when nanoformualted with PLGA and even better with Niosomes, without compromising its cytotoxicity against cancer cells and preventing its cardiotoxic impacts.


Assuntos
Carcinoma , Nanopartículas , Camundongos , Feminino , Animais , Carvedilol/farmacologia , Lipossomos , Fator A de Crescimento do Endotélio Vascular , Doxorrubicina/farmacologia , Carcinoma/tratamento farmacológico , Ácido Láctico
18.
Sci Rep ; 13(1): 5278, 2023 03 31.
Artigo em Inglês | MEDLINE | ID: mdl-37002251

RESUMO

Cardiac toxicity is a public health issue that can be caused by both environmental and occupational exposures. The current study aimed to investigate the effectiveness of carvedilol (CV), Acetovanillone (ACET), and their combination for ameliorating cadmium (Cd)-induced oxidative stress, inflammation, and necroptosis. Rats were assigned to; the normal group, Cd group (2 mg/kg; i.p., single dose), and the other three groups received orally CV (10 mg/kg), ACET (25 mg/kg), and CV plus ACET, respectively and a single dose of Cd. Oral administration of CV, ACET, and their combination significantly dampens cardiac oxidative injury by increasing antioxidants GSH and SOD levels, while it decreases MDA and NADPH oxidase levels mediated by decreasing cardiac abundance of Nrf2, HO-1, and SIRT1 and downregulating KEAP-1 and FOXO-3 levels. Also, they significantly attenuated inflammatory response as indicated by reducing MPO and NOx as well as proinflammatory cytokines TNF-α and IL-6 mediated by downregulating TLR4, iNOS, and NF-κB proteins expression as well as IκB upregulation. Moreover, they potently counteracted cardiac necroptosis by downregulating RIPK1, RIPK3, MLKL, and caspase-8 proteins expression. Of note, the combination of CV and ACET have marked protection that exceeded each drug alone. Conclusively, CV ad ACET potently mitigated Cd-induced cardiac intoxication by regulating NADPH oxidase, KEAP-1/Nrf2/HO-1, SIRT1/FOXO-3, TLR4/NF-κB/iNOS, and RIPK1/RIPK3/MLKL signals.


Assuntos
Cádmio , Traumatismos Cardíacos , Ratos , Animais , Carvedilol/farmacologia , Cádmio/toxicidade , NF-kappa B/metabolismo , Sirtuína 1/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Receptor 4 Toll-Like/metabolismo , Estresse Oxidativo , Transdução de Sinais , Antioxidantes/farmacologia , Antioxidantes/metabolismo , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , NADPH Oxidases/metabolismo
19.
Fundam Clin Pharmacol ; 37(4): 753-768, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36868872

RESUMO

The combined angiotensin receptor neprilysin inhibitor is a promising cardioprotective pharmacological agent. This study investigated the beneficial effects of thiorphan (TH)/irbesartan (IRB), in myocardial ischemia-reperfusion (IR) injury, compared to each of nitroglycerin and carvedilol. Male Wistar rats were divided into five groups (10 rats/group): Sham, untreated I/R, TH/IRB + IR (0.1/10 mg/kg), nitroglycerin + IR (0.2 mg/kg), and carvedilol + IR (10 mg/kg). Mean arterial blood pressure, cardiac functions and arrhythmia incidence, duration and score were assessed. Cardiac levels of creatine kinase-MB (CK-MB), oxidative stress, endothelin-1, ATP, Na+ /K+ ATPase pump activity and mitochondria complexes activities were measured. Histopathological examination, Bcl/Bax immunohistochemistry studies and electron microscopy examination of left ventricle were performed. TH/IRB preserved the cardiac functions and mitochondrial complexes activities, mitigated cardiac damage, reduced oxidative stress and arrhythmia severity, improved the histopathological changes and decreased cardiac apoptosis. TH/IRB showed a comparable effect to each of nitroglycerin and carvedilol in alleviating the IR injury consequences. TH/IRB showed significant preservation of mitochondrial complexes activity I and II compared to nitroglycerin. TH/IRB significantly increased LVdP/dtmax and decreased oxidative stress, cardiac damage and endothelin-1 along with increasing the ATP content, Na+ /K+ ATPase pump activity and mitochondrial complexes activity when compared to carvedilol. TH/IRB showed a cardioprotective effect in reducing IR injury that is comparable to each of nitroglycerin and carvedilol that could be explained in part by its ability to preserve mitochondrial function, increase ATP, decrease oxidative stress as well as endothelin 1.


Assuntos
Traumatismo por Reperfusão Miocárdica , Ratos , Masculino , Animais , Traumatismo por Reperfusão Miocárdica/patologia , Carvedilol/farmacologia , Irbesartana , Tiorfano/farmacologia , Nitratos , Neprilisina , Receptores de Angiotensina , Nitroglicerina , Endotelina-1 , Ratos Wistar , Cardiotônicos/farmacologia , Anti-Hipertensivos/uso terapêutico , Adenosina Trifosfatases , Trifosfato de Adenosina
20.
Can J Physiol Pharmacol ; 101(2): 106-116, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36661235

RESUMO

Inflammatory pathways of Toll-like receptor 4 (TLR4) and NLRP3 inflammasome contribute to acute myocardial infarction (AMI) pathophysiology. The hypoxia-inducible factor 1α (HIF-1α), however, is a key transcription factor related to cardioprotection. This study aimed to compare the influence of carvedilol and thyroid hormones (TH) on inflammatory and HIF-1α proteins and on cardiac haemodynamics in the infarcted heart. Male Wistar rats were allocated into five groups: sham-operated group (SHAM), infarcted group (MI), infarcted treated with the carvedilol group (MI + C), infarcted treated with the TH group (MI + TH), and infarcted co-treated with the carvedilol and TH group (MI + C + TH). Haemodynamic analysis was assessed 15 days post-AMI. The left ventricle (LV) was collected for morphometric and Western blot analysis. The MI group presented LV systolic pressure reduction, LV end-diastolic pressure elevation, and contractility index decrease compared to the SHAM group. The MI + C, MI + TH, and MI + C + TH groups did not reveal such alterations compared to the SHAM group. The MI + TH and MI + C + TH groups presented reduced MyD88 and NLRP3 and increased HIF-1α levels. In conclusion, all treatments preserve the cardiac haemodynamic, and only TH, as isolated treatment or in co-treatment with carvedilol, was able to reduce MyD88 and NLRP3 and increase HIF-1α in the infarcted heart.


Assuntos
Fator 88 de Diferenciação Mieloide , Infarto do Miocárdio , Animais , Masculino , Ratos , Carvedilol/farmacologia , Carvedilol/uso terapêutico , Fator 88 de Diferenciação Mieloide/metabolismo , Infarto do Miocárdio/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos Wistar , Hormônios Tireóideos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...